Al Challenge 3: A* and Heuristics

COSC4550/COSC5550
Artificial Intelligence
University of Wyoming

1 Overview

In this Challenge you will implement A* and various heuristics to increase its
performance.

Figure 1: A picture of the Pacman maze.

Acknowledgment: This assignment is based on the one created by Dan Klein
and John DeNero given as part of Berkeley’s CS188 course. This assignment
was also inspired by the modifications made by Peter Stone in his CS343 course
of 2012. We thank Dan and John for creating the assignment and granting
the permission to use it and we thank Peter for the ideas on how to adapt the
assignment for this course.

1.1 Chapters

Chapters are from the book ‘Artificial Intelligence, A Modern Approach’, third
edition, by Stuart Russel and Peter Norvig. The relevant chapter for this
challenge is chapter 3, section 5. The most relevant sub-section is 3.5.2 (A*
search).

1.2 Program files

The archive for this challenge contains a number of Python files. These files
have been tested on, and should work with, Python version 2.7.3 and Python
version 2.6.6. More recent versions of Python 2.x probably work as well, but
these files do not work with Python 3.x.

The code-base for this challenge is very similar to the code-base of challenge 2
but not identical. Do not assume that what was true for the challenge 2 is also
true for this one. The important files for this assignment are:

search.py This file should be extended with your implementations
of A* and its heuristics.
searchAgents.py This file contains the search agents for this assignment.
pacman.py The main file that runs Pacman games. This file de-
scribes a Pacman GameState type, which you will use
in this project.
game.py The logic behind how the Pacman world works. This
file describes several supporting types like AgentState,
Agent, Direction, and Grid.
util.py Useful data structures for implementing search algo-
rithms.
autograder.py Use this tool to test the correctness of your algorithms.

After downloading the code, unzipping it and changing to its directory, you
should be able to play a game of Pacman by typing the following at the command
line:

python pacman.py

1.2.1 The autograder

For this assignment we provide you with an autograder, which is a program
that will check the correctness of your algorithms in various scenarios. Note
that the autograder is not perfect and you might still have some bugs in your
code even if you pass all tests. It is also possible, that the autograder will ‘fail’
a correct solution because of a minor implementation difference. If you feel that

the autograder is mistakenly failing a correct solution, please let us know, and
we will try to update the autograder to account for your case. That said, the
autograder has been tested by many students before you, so it is quite likely
that the autograder is working as intended, and that you will have to debug
your solution.

The autograder has various options which might help you to debug your pro-
gram. Useful options include -p which will print the test case before doing
the test and --no-graphics which will not display the Pacman game for faster
grading. To see all options us -h.

1.3 Deliverables

For this challenge you should submit your version of search.py. Please, to make
it easier to distinguish files from different students, rename your file to [your-
name/ _search.py before submitting.

Important: Make absolutely sure that your implementation will run all ques-
tions without any modifications being necessary on our part. It should run on
either python 2.7.3 or python 2.6.6 and, when in doubt, you can always test your
implementation on hive. You will only receive partial credit for implementations
that do not run.

To run your solution on hive, first copy your project to hive (hive.cs.uwyo.edu)
using any protocol accepted by hive (such as scp), then ssh onto hive and run
your solution. Do not forget to use the -q option, as you will not have a display
on hive and the program will crash if you try to run it without the -q option.
The -q option is not necessary for the autograder as the autograder does not
require any visualizations.

2 Questions

This challenge is a continuation of challenge 2, and as a result most of the hints
for challenge 2 also work for the questions on this challenge. Your uniform-cost-
search implementation from the previous challenge should make a good starting
point for this challenge.

2.1 Question 1 (10 points): A* search

Implement A* graph search in the empty function aStarSearch in search.py. A*
takes a heuristic function as an argument. Heuristics take two arguments: a
state in the search problem (the main argument), and the problem itself (for
reference information). The nullHeuristic heuristic function in search.py is a
trivial example.

For this part of the assignment, test your A* implementation on the origi-
nal problem of finding a path through a maze to a fixed position using the
Manhattan distance heuristic (implemented already as manhattanHeuristic in
searchAgents.py).

python pacman.py -1 bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic
You can test your code with the autograder using the following command:
python autograder.py -q ql

You should see that A* finds the optimal solution slightly faster than uniform
cost search (about 549 vs. 620 search nodes expanded in our implementation,
but ties in priority may make your numbers differ slightly.)

2.1.1 Grading: 10 points

You will get full credit if your algorithm solves the problem using A* with the
provided manhattanHeuristic. Test the correctness of your solution by running
the autograder.

2.2 Question 2 (4 points): Implement a heuristic

The real power of A* will only be apparent with a more challenging search
problem. Now, it’s time to formulate a new problem and design a heuristic for
it.

In corner mazes there are four dots, one in each corner. Our new search problem
is to find the shortest path through the maze that touches all four corners
(whether the maze actually has food there or not). Your task is to implement a
heuristic for the CornersProblem in cornersHeuristic found in searchAgents.py.
Note that for some mazes like tinyCorners, the shortest path does not always
go to the closest food first!

python pacman.py -1 mediumCorners -p AStarCornersAgent -z 0.5
You can test your code with the autograder using the following command:
python autograder.py -q q2

Important: Before starting this assignment make sure your A* implementation
is entirely correct! It is very easy to make a mistake in A* that will cause it to
expand too many nodes. If your A* has one of these mistakes you might not be
able to solve mediumCorners in any acceptable time. Use print statements and
the autograder to detect and fix these issues before attempting this or the next
question.

2.2.1 Hints and Observations

e Remember, heuristic functions just return numbers, which, to be admissi-
ble, must be equal to or lower than the lower bound for reaching the goal
(i.e. it must never overestimate the cost of reaching the goal).

e The shortest path through tinyCorners takes 28 steps, while the shortest
path in mediumCorners takes 106 steps.

e The corners heuristic takes two arguments: state, and problem. The
state will be a CornerState and the problem will be a CornersProblem,
both are defined in searchProblems.py. Look at the class definitions to
see which functions are available for you to use.

2.2.2 Grading: 4 points

Test your solution on the mediumCorners map. If your heuristic is admissible
and consistent, you will receive the following score, depending on how many
nodes your heuristic expands.

Nodes expanded Points COSC 4550 Points COSC 5550
nodes > 1600 2 2

1600 > nodes > 1200 4 3

1200 > nodes > 800 +0.5 extra credit 4

800 > nodes > 692 +0.5 extra credit +1 extra credit

692 > nodes (current record) +1 extra credit +1 extra credit

Important: You heuristic has to be admissible and consistent in order to re-
ceive full credit! Check admissibility and consistency by running the autograder
for this question.

2.3 Question 3 (6 points): Eating All The Dots

Now we’ll solve a hard search problem: eating all the Pacman food in as few
steps as possible. For this, we’ll need a new search problem definition which
formalizes the food-clearing problem: FoodSearchProblem in searchAgents.py
(implemented for you). A solution is defined to be a path that collects all of
the food in the Pacman world. If you have written your general search methods
correctly, A* with a null heuristic (equivalent to uniform-cost search) should
quickly find an optimal solution to testSearch with no code change on your part
(total cost of 7).

python pacman.py -1 testSearch -p AStarFoodSearchAgent

You should find that UCS starts to slow down even for the seemingly simple
tinySearch. As a reference, our implementation takes 2.5 seconds to find a path
of length 27 after expanding 4902 search nodes.

Fill in foodHeuristic in searchAgents.py with a consistent heuristic for the Food-
SearchProblem. Try your agent on the trickySearch board:

python pacman.py -1 trickySearch -p AStarFoodSearchAgent
You can test your code with the autograder using the following command:
python autograder.py -q g3

Our UCS agent finds the optimal solution in about 13 seconds, exploring over
16,000 nodes.

2.3.1 Hints and Observations

e The food heuristic takes two arguments: state, and problem. The state
will be a tuple consisting of a position and a foodGrid (see game.py for
the grid implementation), and the problem will be a FoodSearchProblem
(defined in searchProblems.py). Look at the class definitions to see
which functions are available for you to use.

2.3.2 Grading: 6 points

If your heuristic is admissible and consistent, you will receive the following score,
depending on how many nodes your heuristic expands.

Nodes expanded Points COSC 4550 Points COSC 5550
nodes > 15000 3 3

15000 > nodes > 12000 4 4

12000 > nodes > 9000 6 5

9000 > nodes > 7000 +0.5 extra credit 6

7000 > nodes > 1516 +0.5 extra credit +1 extra credit

1516 > nodes (current record) +1 extra credit +1 extra credit

Important: You heuristic has to be admissible and consistent in order to re-
ceive full credit! Check admissibility and consistency by running the autograder
for this question.

3 FAQ

Q: How do heuristics work with problems that have more than one goal?

A: In the Corners problem and the AllFood problem you need to collect more
than one piece of food. For these problems the heuristic should give an
estimate for how many steps it would take to collect all pieces of food.
Fore example, given the following maze:

+-—+
[# |
|.pl
[#% |
+-—+

Here * indicates food, . indicates an empty space, and p indicates Pac-
man’s current position. The most accurate prediction is 5; it takes at least
5 steps for Pacman to collect all the food. As a result, for your heuristic
to be admissible, your heuristic is not allowed to return more than 5.

Also remember that your heuristic should be based on the current state
of the world, and it should thus take into account when food is eaten. For
example, if a few steps later the maze looks like this:

Foot
[..
[p.|
[|
Foot

Your heuristic may not return more than 2, since all food can be collected
in 2 steps.

Obviously walls may increase the number of steps necessary to complete
the problem. The following maze, for example, needs at least 9 steps to
solve:

ot
[*]*]
|..P|
[*]|
ot

However, this doesn’t mean you heuristic has to return exactly 9, it may
return any number that is lower than 9. If your heuristic would return
7 (the number of steps required if the walls weren’t there) your heuristic
would still be admissible.

Q: I receive a TimeoutFunctionEzxception when running the autograder, what
s wrong?

A: For the heuristic questions your algorithm may not take longer than 5
minutes to complete. If you see this exception then it means that your

code is simply too slow. The most common issues that can make your
code too slow are: an inefficient A* star algorithm, an inefficient heuristic,
calling your heuristic too many times.

To check for the first problem, run your A* algorithm with the Null
heuristic; if that is too slow, try to optimize your A* algorithm. To
check if your heuristic is called too many times, add a counter in your
heuristic function (put a global variable at the top of your file, and incre-
ment it at the top of your heuristic function. See: http://www.python-
course.eu/global _vs local variables.php for information on using global
variables). Your heuristic function should be called once for every state. If
you don’t run into either of those problems, try to optimize your heuristic
function.

